The Present and Future of Photovoltaic Manufacturing

Colin A. Wolden
E.T.S. Walton Visiting Fellow
University College Dublin
School of Chemical and Bioprocess Engineering
Belfield, Dublin 4, Ireland

Permanent Address
Department of Chemical Engineering
Colorado School of Mines
Golden, CO 80401 USA
Outline

Energy: Resources & Needs
 – Survey of Conventional and Renewable Resources
 – The Scope of the Sustainable Energy Challenge
 – A Little Science

Status & Prospects for PV Manufacturing Technologies
 – Single and Multi-crystalline Silicon
 – Thin Film: (CdTe, a-Si, CIGSS)
 – Dye-sensitized Solar Cells (DSC)

Meeting the Terawatt Challenge
 – Areas for Research Investment
 – Broader Issues
Humanity’s Top Ten Problems for next 50 years

1. ENERGY
2. WATER
3. FOOD
4. ENVIRONMENT
5. POVERTY
6. TERRORISM & WAR
7. DISEASE
8. EDUCATION
9. DEMOCRACY
10. POPULATION

2003 6.3 Billion People
2050 8-10 Billion People

Source Richard Smalley Energy & Nanotechnology Conference
Rice University, Houston May 3, 2003

see also R.E. Smalley, MRS Bulletin 30 412 (2005)
Current Energy Portfolio

Global Total ~ 15 Terawatts

- 1 TW = 10^{12} W
- Predominantly through the combustion of fossil fuels

N. S. Lewis, *MRS Bulletin* 32, 808 (2007)
Conventional Energy Resources

How much is left?

- Oil: 40 – 125 years
- Natural Gas: 65 - 210 years
- Coal: 250 – 360 years
- Nuclear: 80 – 300

More Difficult/Costly

CO₂ & Climate Change

Carbon Dioxide Variations

- The Industrial Revolution has caused a dramatic rise in CO₂.
- Ice Age Cycles

Global Temperatures

- Annual Average
- Five Year Average

CO₂ output per kilowatt-hour (liters)

| 26 | 21 | 6.7 | 8.4 | 11 | 530 | 330 | 500 | 17 |

Source: DOE, AWEA, DOE-EPA, Electricity from Renewable Resources, NAS (2010); (bottom) DOE, AWEA.
Population & Wealth

2050: > 10 Billion

To Stabilize CO₂: 30 TW of carbon-free energy by 2050

Renewable Energy Resources

- Hydroelectric
- Wind
- Biomass
- Geothermal
- Ocean/Tides
- Solar

Global Potential
- Current: ~2 TW
- Practical: ~10 TW

Source: WEA 2000
Renewable Energy Resources: Solar

Solar Energy Potential
- Solar Flux: 1.1×10^5 TW
- 1 hour Sunlight = Annual Global Consumption
- Practical Potential: 600 TW
- Infinite Supply

Solar Energy Conversion Options
- Solar Thermal: Photons to Heat
- **Solar Photovoltaic: Photons to Electrons**
- Solar Fuels: Photons to Chemicals
 - Water Splitting: $2\text{H}_2\text{O} + h\nu \rightarrow 2\text{H}_2 + \text{O}_2$
 - CO$_2$ Reduction: $\text{CO}_2 + 2\text{H}_2\text{O} + h\nu \rightarrow 2\text{CH}_3\text{OH} + \text{O}_2$
Terawatt Challenge

- 30 TW of clean, renewable energy by 2050
- Require 1 TW/year capacity
Growth of the PV Market

- Is 20% growth sustainable?
- What about costs?

MW

1988 - 2003

2004 - 2009

Future?

- 2009
 - 8 GW
- 2010*
 - 16 GW
PV Costs are Dropping

The Experience Curve: 80%

- x-Si: $2/W_p, $1.3/W_p (China)
- CdTe (First Solar): $1/W_p

Electricity from solar PV is becoming cheaper...

...and grid costs are rising

Periodic over-supply is inevitable

Potential for explosive growth in demand upon convergence

Grid cost convergence

No technical breakthroughs are required to achieve solar PV cost reduction curve(s)

Source: Deutsche Bank estimates

US - Average price of electricity in 2009 est: 9.5 cents/kWh

Source: Deutsche Bank estimates

Market poised for explosive growth this decade

Are we ready for it?

Workshop Goal

“Identify the potential technologies and innovations that offer low-cost, high-conversion-efficiency and sustainable photovoltaic materials.”

Reviewed Each Technology

- Current Status
- Identify the short/long term needs
- Recommend/prioritize areas for R & D Investment
Solid State pn Junction: The Electron Pump

- Join to dissimilar semi-conductors: A diode
- Absorb Photon: Generate Electron-Hole Pair
- Junction provides a internal bias

\[h\nu > E_g \]
Why is Solar so Inefficient?

Thermodynamic Limit: 30% Conversion

– Photons below band gap are not absorbed
– Photon energy in excess of band gap wasted

<table>
<thead>
<tr>
<th>λ/nm</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε/eV</td>
<td>4.1</td>
<td>3.1</td>
<td>2.5</td>
<td>2.1</td>
<td>1.8</td>
<td>1.55</td>
<td>1.38</td>
<td>1.24</td>
<td>1.13</td>
<td>1.0</td>
</tr>
</tbody>
</table>

UV NIR

Technology Classification

1st Generation
- Crystalline silicon, relatively thick (100s μm)
- Higher efficiency, relatively expensive

2nd Generation
- Thin Film Technology (1 – 10 μm)
- Flexible, low cost, lower efficiency
- CdTe, CIGS, a-Si, DSC

"Next Generation"
- Organic PV (OPV), plastic solar cells
- Earth abundant inorganics (CZTS, pyrite)
- Quantum-dot (3rd Generation)

Courtesy Richard van de Sanden, TU Eindhoven
Crystalline Silicon

“1st Generation” Photovoltaics

- Invented 1954
- Dominates Market (~85%)
- Single Crystal (c-Si)
- Multi-crystalline (mc-Si)
- Mature, Earth Abundant
- 10 Companies Dominate

PERT Cell, UNSW

Chapin, Fuller & Pearson, JAP 25, 676 (1954)
Crystalline Silicon

Cast Brick

Cut & Grind Bricks

Wire-Cut Wafers

Clean & Polish

Czochralski Growth

Ingot

Big Problem

50% Loss

Improve Feedstock

Metallurgical 99%

Solar Grade ???

Electronic < 1 ppb

mc-Si

c-Si
Ribbon Silicon

EFG Si
Edge-defined film-fed growth

String Si

Kerfless Wafers
- Invented in the 1970s
- mc-Si: 200-300 μm thick
- Passivation of defects critical
- Record Cells ~18%, Modules 14.5%
- **Energy payback < 1 year**
- Reduce thickness, improve throughput

Ultrathin Silicon (5 – 50 µm)

- Current wafers: ~200 µm
- Optimum Thickness: ~40 µm
- **10X Improvement Possible**

Maintain High Efficiency

- Optical Enhancement
- Surface Passivation
- Wafer Handling

Graph showing efficiency vs. thickness with an optimal thickness of about 40 um.

Kerr et al., 29th IEEE PVSC, 2002
Production of Ultrathin Silicon

Strategies for Production

Liftoff

Hetero-epitaxy

Unanswered Questions

- Reduce T requirements?
- Low cost sacrificial substrate?
- Throughput?
- **Economics**
- Trading Process vs. Material Costs?

Photon International, p.116 (May, 2009)

J. Poortmans, IMEC
Thin Film CdTe

“2nd Generation” Photovoltaics

- Invented 60s, developed 80s, 90s
- Major Player (~12% of market)
- First Solar + Dozen Startups
- Ideal band gap, high absorption
- Simple deposition: Evaporation
- Compatible with float line glass
- **Low Cost Leader ($1/Wp)**

Thin Film CdTe Manufacturing

First Solar
CdTe: Opportunities & Challenges

Improve Efficiency
- Advanced front contact, J_{sc}
- Need to Increase V_{oc}
- Carrier Lifetime/Density
- Understand/Control of Grain Boundaries

Concerns about Toxicity/Availability
- Hotly debated questions
- Not volatile, no leaching
- Recycling programs in place
- Cd byproduct of Zn Mining
- PV panels: Cd Sequestration
- Te is a relatively scarce material

Practical Potential
- Research
- Development
- Process Integration
- Current Production

Simulated V_{oc} [V]

Amorphous-Nanocrystalline Silicon

Synthesis & Attributes

- Carlson and Wronski (1976)
- Sharp, United Solar, Oerlikon
- Plasma-enhanced CVD using SiH₄/H₂
- Low temperature (<150 °C)
- Low weight, flexible laminates
- Multi-junction compatible

Carlson & Wronski, APL 28, 671 (1976)
a-Si/nc-Si: Opportunities & Challenges

High Rate Manufacturing
- a-Si Unstable: Staebler-Wronski Effect
- nc-Si Stable: Slow rate, low absorption
- VHF (100 MHz) plasma, new linear sources

Advanced Photon Management
- Increase light collection
- Reduce thickness requirements
- Texturing, plasmonics, index matching

Increase Efficiency
- Triple junction cells
- Introduce SiGe alloys
- Targeting 15%

5X Increase in Thickness

Plasmonics
CIGSS: $\text{CuIn}_x\text{Ga}_{1-x}\text{Se}_{2-y}\text{S}_y$

Attributes

- Kazmerski et al. (1976)
- Tunable Band gap (1 – 2 eV)
- Thin Film Efficiency Leader (20.1%)

Many Companies/Many Techniques

- Co-Evaporation
- Sputtering/Anneal in Se Vapor
- Screen Print /Anneal in Se Vapor

References

CIGS: Opportunities & Challenges

Robust Manufacturing Process
- Translate cell record into module performance
- Could compete with c-Si

Materials Chemistry
- Optimizing Chalcopyrite
- Replace CdS as window layer
- Reduce/replace In
- Understand the role of Na

Improved Stability
- Reduced sensitivity to moisture (replace ZnO?)
- New moisture barriers (WVTR < 10^{-6} g/m²/day)

DSC: Dye Sensitized Cell

Photoelectrochemical Cell

- Discovered by Becquerel (1839)
- Invented by Grätzel (1990)
- SolarPrint, G24i, Dye-sol
- **Works in diffuse light (indoors, cloudy)**
- Low T, Flexible, Lightweight

Many Steps

- Photon absorbed by dye
- e^- “hops” TiO₂ particles
- Redox Reaction
 \[I_3^- + 2e^- \rightarrow 3I^- \]
- Diffuse across electrolyte
- Regenerate dye

DSC: Opportunities & Challenges

Increase Efficiency: Stagnant at ~11%
- Unchanged since 1995
- New Dyes: Improve \(J_{SC} \)
- New Redox Couple: Improve \(V_{OC} \)

Improved Stability
- New Dyes (>10^8 turnovers)
- New Electrolyte (Ionic liquids/Gels)
- Simultaneous Optimization

R2R Processing
- Eliminate Glass
- Encapsulation

All Technologies Continue to Grow

- CdTe and Si Growing Fastest
- Other Technologies Getting Squeezed

Source: Navigant Consulting
3 Possible Future Scenarios

Status Quo
- Continued dominance by c-Si, mc-Si
- CdTe an important component of utility market
- Others: Niche markets in consumer/aerospace

Transition to New Forms of Crystalline Silicon
- Ribbon silicon
- Ultrathin silicon

Breakthrough in Thin Film Technology
- CIGS: Compete with x-Si, CdTe in power sector
- DSC: Consumer products, BIPV, selected climates
Revolution Through Evolution?

Adapted from M. A. Green, “3rd Generation Photovoltaics”, Prog. Photovolt.: Res. Appl. 9, 133 (2001)
Areas for Investment

NSF/DOE

– Predominantly supported 3rd Generation
– Little for x-Si, thin films

Fundamental Challenges Remain

– Developing thin Si (< 100 µm)
– Increase CdTe/DSC efficiency
– Improve CIGS/a-Si manufacturing

Cross Cutting Issues

– Advanced Photon Management
– Effective Encapsulation/Compatibility with R2R Processing
– Manufacturing Science: Metrology/Reliability
Transportation & Storage

Geographic/Diurnal Variations
- Common to most renewables
- Management challenge

New Grid
- From concentrated to distributed
- From continuous to variable
- Increased capacity
- Coal/Nuclear/Natural Gas
- Wind/ Hydroelectric/Solar

Energy Storage
- Batteries, Hydrostatic, Mechanical
- Solar Fuels: Chemical

Meeting the Sustainability Challenge

50% from New Energy Sources
- Solar PV, Solar Thermal
- Wind, Hydroelectric
- Nuclear: Bridge Technology

50% Increased Efficiency
- More with less
- Technology exists
- Maintain quality of life

Progress:
- < 2000
- > 2000

GDP/capita (000's 1997 $ PPP) vs. GJ/capita-yr
Solar Energy

- Critical contributor to a sustainable future
- PV poised for explosive growth

Future Outlook: No silver bullet

- x-Si: Leader in utility & residential markets, large upside remains
- CdTe: Fast growing, expect to increase share of utility market
- a/nc-Si: Improved deposition rate/cost critical to keep up with CdTe, low weight laminates a differentiator
- CIGS: Potential to challenge x-Si, awaiting a break through
- DSC: Consumer products, BIPV where weight and flexibility are key drivers and lifetime less of a concern

Renewables + Increased Efficiency = Sustainability
Acknowledgements

Financial Support

– Science Foundation Ireland: ETS Walton Fellowship
– US National Science Foundation: Grant CBET-1027337

All PV Workshop Participants

In particular, but in no particular order:

– Dr. Andrew Gabor (1366 Technologies), Dr. Markus Beck (First Solar), Dr. Ingrid Repins (NREL), Dr. Chandan Das (University of Delaware), Dr. Juanita Kurtin (Spectrawatt), Prof. Sean Shaheen (University of Denver), Prof. Jason Baxter (Drexel University), Prof. Eray Aydil (University of Minnesota), Dr. Vasilis Fthenakis (Columbia/BNL), Dr. Larin Laird (Plextronics), Dr. John Torvik (Novus Energy Partners), Prof. Angus Rockett (UIUC)